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In this paper we consider a multiple dyadic stationary process with

the Walsh spectral density matrix f (x), where e is an unknown parameter

vector. We define a quasi-maximum likelihood estimator 6 of e, and give
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propose an information criterion which determines the order of the model,

and show that this criterion gives the consistent order estimate. As for

a finite order dyadic autoregressive model, we propose a simpler order

determination criterion, and discuss its asymptotic properties in detail.

This criterion gives strong consistent order estimate. Also detections of

signals for dyadic stationary processes will be discussed. In Section 6

we discuss testing whether an unknown parameter e satisfies a linear re-
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ratio criterion under the null hypothesis.
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All,

1. INTRODUCTION

There has been much discussion of Walsh spectral analysis for dyadic

stationary processes. MorettinL(-t74- investigated some asymptotic prop-

erties of.the finite Walsh transforms of dyadic stationary processes.

Nagai'7(-197 gave the spectral representations for dyadic stationary pro-
le

cesses. If we consider finite. dyadic linear models then the greatest

differences between dyadic stationary processes and ordinary stationary

ones appear. Nagai(Ti98frj and Nagai and Taniguchi (1-98-) established thatN

a dyadic autoregressive and moving average{A(-PJ4A process of finite order

can be expressed as a dyadic autoregressive '(-A- process of finite order

and also as a dyadic moving average -(-BHA-)process of finite order. Nagai

and Taniguchi'(1987) discussed the principal component analysis of a

multiple dyadic process, and also the canonical correlation analysis.

Morgettin 4--)W gave a convenient survey for Walsh spectral analysis.

" --- this paperwe considersa multiple dyadic stationary process with

-t-4e Walsh spectral density matrix f (A), where e is an unknown parameter

vector. We define a quasi-maxinium\likelihood estimator e of e, and give

the asymptotic distribution of 0 under appropriate conditios. In Section

3 we propose an information criterionwhich determines the order of the

model, and show that this criterion gives the consistent order estimate.

In Section 4, for a finite order dyadic autoregressive model, we propose

a simpler order determination criterion, arnd show that the estimated orderor

has strong consistency. Also some interesting examples are given in the

identification problem for Walsh spectrum. In Section 5 we consider a

signal detection model for dyadic process of finite order, and show that

this model is equivalent to a dyadic moving average model. In Section 6

sin '
s s i C,
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wdiscuss a testing problem whether the unnw aae e satisfies

a linear restriction. Then we give the asymptotic distribution of the S

likelihood ratio criterion under the null hypothesis.
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2. DYADIC STATIONARY PROCESSES AND ESTIMATION THEORY

First we introduce some basic concepts and notations. Denote by T

the set of all nonnegative integers. Let x and y be nonnegative real

numbers and have the following binary expansions:

x I x 2 with x =0 or 1,

y : y92 with yk = 0 or 1.

Then the dyadic addition(tI)is defined by

xn+y = I Ix.-yl 2 t.

A stochastic process (possibly vector process) {Y(t): t e T} is said to be

dyadic stationary if the joint distribution of Y(t1 ), Y(t2), ... , Y(t n) is

the same as that of Y(t1 & t), Y(t2 @ t), ... , Y(tn( t) for every finite

set of integers {tl, ... , tn} and for every integer t. We denote by J.

{W(tqx): 0 < x < 1), t = 0,1,... the system of Walsh functions. The prop-

erties of Walsh functions are well known:

(i) for each t e T and X e [0,1], the value of W(t,x) is only +1 or -1,

(ii) for any s, t e T,

W(t,X)W(sq) : W(t(n) s, X), a.e. x,

(iii) for each t e T and x e [0,1],

W(tx)W(tij) = W(t, x( +), a.e. I.

(See Morettin (1974).)

Let Y(t) (Y l(t)% ... , Yq(t)) t e T be a q-dimensional dyadic stationary

process with zero mean and k-th order cumulants

Ca1 *.. .ak (tl' , 'tk- cum{Ya 1(tIOTtk), Ya 2*(t 2-OT tk) .. a k(tk) , .1"2~
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t19... 9t k e T. We denote the covariance matrices

r(t) {ca a 2 (t 1 )), qxq matrices.

The statistic

(N) N-i
d~'x I Y(t)W(t,x) (2.1)

t= 0

is called the finite Walsh transform of {Y(t): t, = 0,1,... ,N-1). Throughout

mthis paper we assume that N = 2 , with m a nonnegative integer and denote

d(N)U ~ (N) (x),...,d (N) (X)) Here we assume the following.

ASSUMPTION 1. For every k and j 1,,..k1

for all a 1, ... 9a V

* - Then the Walsh spectral density matrix and the Walsh cumulant spectrum

of order k of {Y(t)) are defined by

Af(X) = )Wt,)
t= 0

and

f (X9 ..9 )

k-i

tk a a.. (a 1' **... tk l) T, W(t Ix .)9 (2.3)

respectively. The following proposition is due to Morettin (1974).

-b
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PROPOSITION 1. Under Assumption 1,

cumd(N) ( d (N)ac 1  *'"'da (ak)

D N(Al® k){fa.-I ak (A, I Xk-l) + O(N-)}, (2.4)

N-1 '-1

where DN(X) : t=oW(t,x), and the term O(N 1) is uniform with respect to

Although we do not assume the Gaussianity of {Y(t)}, we can make the

Gaussian likelihood function L of {Y(O), ...,Y(N-1)}, formally, and approxi-

mate L. That is, we get

log L { f{logdet f(X) + tr I(X)f -l )dx + constant. (2.5)0~

where the fitted Walsh spectral density matrix of {Y(t)} is parameterized

as f ( ), e = (8 ,...e)' e r, and

I N(A) FN(X)FN(x)' = {Iab(X)}, say,

_ 1 N-1
FN(A) XN Y(t)W(tX).

Thus we estimate e by the value & which minimize

D(fO'IN I og detfo(X) + tr IN(X)fe(X)- ldx, (2.6) A
o0

with respect to e. Henceforth we call 0 quasi-maximum likelihood estimator

of e. To discuss the asymptotic properties of , the following lemma is a

keystone.

U,"1
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LEMMA 1. Let () (x)} , j 1 l,...,r, be qxq matrix-valued
ab

Continuous functions on [0,13 such that (X) : ¢j(X)'. Under Assumption 1

we can show that

(1) lim Jtr IN(X)4(X)dX : Jtr f(X)j(X)dX, in p, (2.7) .'*N-* 0 0 L

(2) the quantities

A. : Aff fltr{(IN() - f(x))j(x)}dX, j
0

have, asymptotically, a normal distribution with zero mean vector and

covariance matrix V whose (j,m) element is

0

q 1

+ fba (Xf ) fabcd (X"A)dxdl. (2.8)• a,b,c,d~l
~0

Proof. Notice that

q 1 (J)
Sab ab baa,b=l 0

By Proposition 1, we have

E(Iab(X) - fab(x)) =O(1),

where 0(1) is uniform with respect to X. Hence we obtain
1/',)

E(Aj): O(N- / 2). (2.9)

Since
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cum{I ab (X), I cd(1J)) =1 2 cm(ax'dd(1) d~b( dpj)
N

+ cum~daI~x), dCi)u~b~) (11J

+ cum(daCx) , d b(x) , dc(p), d d(1))) 0

1 ID2 (X 01)[fW X + f xWf x)
2 {N ±JLad bc\ ac bd

+ D N~x®x+)PI® )fabcd(xq'lj) + 0 4

and

D N +) v0+1) = N (0) = N,

we have

1u(, N (U) W (i) c u x),

cum(AjAm/ = JO0 a,b,c,dI a d lJ.IIVa cu)UlX

x)%(d) ()f

a,b,c ,d11 .~ 0la ac

+ 2j 4 '(X)fac (x)fbd(x' d Nj dc (I )N~x ) J d l

(2.10)

Note

N if p <I
D N(x eX) =

[0 otherwise,

(iI)

we get that by the continuity of 4dc) (p),

,i()W + 00,if x <{ . dc ) 2
~ f~)(~o~( ~ )d~ = (1), otherwise.
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Substituting the above into (2.10), we get

cum(AjAm) = 2 tr{f(x) m(x)f(x)j()}dx

q 1

+ ab j ba ()X 4 (i) , 3 X91 )dxdp + o(l). (2.11)
a,b,c d= 0 ba dc ac~

Thus (2.9) and (2.11) imply our result (1). Also (2.11) gives the asymptotic

variance (2.8). As for the asymptotic normality of Aj, we have only to

evaluate J(J>3)th order cumulant cum{A ilA i , ...,Ai }. Here, without

loss of generality, we evaluate it for scalar process.

By Theorem 2.3.2, p.21, Brillinger (1975), we have

cum(dll("1)dlz('l), ... , d (d)ddz2(XJ) )

= Z cum(dji(Xj), (j,i) E VI) ... cum(dji (Aj) (j,i) e VS (2.12)
V

where the summation runs over all indecomposable partitions v = vU ... UVs

of the set {(j,i), j = 1,2,...,J, i = 1,2}, (the definition of indecomposa-

bility can be found on p.20, Brillinger (1975)). By indecomposability of

the partitions, each v contains at least two elements, we haven

S < J/2.

By Proposition 1, we have

CUM (dji(xj), ( ji e v )... cum (dj i (j), (,i e vS 0(n~ 1DN(j i x

An

Since

[N, if 0 < A<1
0, otherwise,

we have, for J > 2
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1 I DN( x ) 1 d

J0 0 n1l  (ji)e d .

=j ... DN(1.I()iJ2)DN(1P2TP 3 ) ... DN(11s()1ll)d1jl ... dps  O(N),

and for J = 1

J1 

1

.f. DN (lI.D.. ())dxI ... d = 0(1).

Thus,
f ... cum(d11(xI)d12(x),.dd1(1,j)dd2("J))= O(N),

00

and consequently

cum(Ai  A1 ) N-J/21 ... Jl1  (x1) .. (x3 )

cum(dll(xl)d 12(xl),...dil (xj)dJ2 (xji))dX I ... dxj

0 N -J/2+1

which implies the asymptotic normality. 0

Suppose f(x) is the spectral density of a stationary process and

{f (X)} is a family of fitted spectral densities which are parameterized

by e e o C Rr, where o is a compact set in IR r . We define a pseudo-true

value e of e e o C ,R by a value which minimizes

D(ff) =1 {log det f (A) + tr f(A)f (A.)-l }d

with respect to e e o. S'

.5.

ASSUMPTION 2. The fitted model f.(A) is twice continuously differ-

entiable with respect to e e 0.
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ASSUMPTION 3. If 0 / Q*, then fY(A) A f,(A) on a set of positive

Lebesgue measure. The matrix

1 2
Mf(_Q) = a [log det f (X) + tr f0 Wx) f(x)]dx, (2.13)

is nonsingular for all e e o, and Mf = Mf(i).

The first statement of Assumption 3 is an identifiaility condition.

In Section 4 some nonidentifiable examples will be given. Then we have

the following theorem.

THEOREM 1. Let {Y(t)} be a q-dimensional dyadic stationary process

with mean zero and the spectral density f(A). Suppose that Assumptions

1-3 are satisfied, and that 6 exists uniquely and lies in Int . Then

(i) lim § = o in P,

(ii) the distribution of the vector /N{ -e}, as N - , tends to the
normal distribution with mean zero and covariance matrix M f V M f where

V = {V jm is a rxr matrix such that

Vm 2f tr[f(X) a 1f x)lfx -IV. 2frT.~ {f(x ' 1) - f(x) {f (ix)}  ]: -dx
J m 0 08a am 03 - . - -

q 1jaf(ba)(X) Df(d'c)('X)
+a~~b~c~d~l @e O ~ ac (X 'X '1u )dxdv,a , Toc fI de 3 I fo O =5 bc

(b,a) -
where fb (x) is the (b,a)-th element of f O(x) -

Proof. From the definitions of 9 and e, we have

e D(fe IN) : 0 (2.14)
N ,



........ . . ....... ('

We 9D(f0 'f)o=. (2.15)

Expanding (2.14) around , we have

0 DM I, ) + M(*)(2-* ) (2.16) '

where e* lies on the straight section with end points and 6, and S.

Mf(G) = 2  D(f~ WIN).

By Lemma 1, we have

-- D(f ,l N) 0, in P

and

Mf() - Mf(q), in P for each 0 e o.

By Assumptions 2 and 3, absolute values of eigenvalues of Mf(6) have a

positive lower bound for all e e o. Hence when n is large enough, with a

probability arbitrarily near to one, so do the absolute values of eigenvalues

of Mf(e). By (2.16) we have

and consequently

Mf(q*) Mf(5), in P.

Then the limiting distribution of /N (_-6 is equivalent to that of

f a)-1IN,"N)

: - /N-N 1 {log det fi(A) + tr f5 (x)11N(A)}dx

1 a-

M I a (tr ff(() {IN(x)-f(x)}]d( (2.17)f - '

r ,,.,
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12

* by (2.15). Again applying Lemma 1 to (2.17), we have completed the

proof. C3

Remark. If the true Walsh spectral density matrix f(x) =f 6(x),

the pseudo-true value is equal to the true value, i.e,, e=0(see

Hosoya and Taniguchi (1982)) ,

N N N

* KC



13 . I-

3. MODEL SELECTION OF WALSH SPECTRAL MODELS

In the previous section we assumed that the order of the unknown

parameter vector of the Walsh spectral model fo(x) is known. However, in

the actual situation, we must estimate the order of dim e = r from the data.

Here we assume that the process {Y(t)} has the Walsh spectral density matrix

f0 (X), 0r = (el, . r) where er is an unknown parameter vector. (We
-r

use suffix r to stress the dimension.) Then we fit the Walsh spectral

model f e(x), 0 < k < L, where L is a preassigned upper limit to the order.

We determine the true order r by the value k which minimizes the following

criterion:

k CN
A(k) = D(fo kI ) + - for k = O,l,...,L, (3.1)

kN N

where CN = and CN/N + 0 as N =. For this estimated order k we hav

THEOREM 2. Suppose that all the assumtions in Section 2 for f(X) =

f0 (x) and fe(X) = f0 (X) are satisfied. Then limrk = r, in p.
-r - -

Proof. From (2.16) we have

Ik ) = - f;(Ok)1  tr (X)-l ) - f(X)}dX (3.2)2~ 20 f -- J mk 1kN

which tends to normal by Theorem 1. Thus we have, for any sequence of

positive numbers CN

P[II (- ~ l > N] o1)(3.3) .-

where is the Euclidian norm. Taking C we obtain

N N'ON we obtai

J. .!

W, , ,i.',#] .ww,, L, 'w ,", . ] '.,' , .. '.. ... :, ,,,.,,.., ,... . .. ... .,,,,, '.2..',,..,..',.",,-.:,.'.,:.,2. .,
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2k - k 0 /N)" (3.4)

Expanding around 0 e and noting (3.4) we can see that

aD(f I N)

D(- ,ZN) D(f IN) + -k 0 =

f -k -k -k -k

+ -B) Mf(ek)(k "k)" (3.5) "

aD(fe  
1N)

Since -k we have
a ek 2 k = " = w

1~f ,jf *~f j
D(f lN : N 2-2k -k)I f(k)(k-k). (3.6)

As first step we show that

P(k< r) 0 as N . (3.7)

For k < r, we evaluate

(r-k)CN.-

P1  : P(A(k) <A(r)) : P{D(f klN) - D(f ,IN) < N N
e kr

Using the relation (3.6), the above probability is approximated as S.

P{D(f5,IN) - D(f I N ) -
-k _r

(r-k)CN 1 . M

< N + T -k k f-k__k

- l( r- r)M (e*)(6r ~ -e )}~ . (3.8) ,
2- r -r _r(.8

Using Lemma 1 the left-hand side of the above {. converges to D(fkf) -

D(fg ,f), which is strictly positive for k < r. On the other hand, by (3.4),
-r

the right-hand side of {.} converges to zero in probability which implies the
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probability P 0 as N w. As second step we show

P(k > r) -* 0 as N-*w. (3.9)

We have for k > r,
(r-k)C N

P2  P{A(k)< A(r)} P{D(f6 k 
1 rN D~f IN) < rN

_k -rN

Using the relation (3.6), the above probability is approximated as

PD(f 5 k- D(f5 SI (6 Bk)'Mf(0k) * k-k N - N 2 -k-- _ k-2

1 ^  - ) (r-k)CN
S(e-r-) Mf(e-r)(r--r ) - N (3.10)

Because f k(X) f5 (W, for k > r, we can see that
k -r

D(fk 'IN ) - D(fr IN) : 0. (3.)

While, by (3.4), we can see that

1V(- 5 e) )(IM-k + ( 5 5~) ~ * rer

_kk Mf -k)(- r r f'-r -r r

ir, N

is at most of order O( . However the right-hand side of {.} in (3.10) is
p N

(r-k)CN I

N , (r<k), which implies P2  0 0, as N - w. Thus we have completed

the proof. "

r

. .- N , . . . . ... .... .... ... - ,. . ... ...N - - - . ;.-... -. - N-.. .- '
i: , ,,,N?"" .< N '"' i-, V*,N, '."' . -. -. ."-'"-". . --. " . "" " """ f ' " -? "" " '-; - " " -;
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4. DETERMINATION OF THE ORDER OF DYADIC AUTOREGRESSIVE MODELS

In the previous sections we could proceed in fairly analogous ways

to those used in the ordinary stationary processes. However if we consider

finite parametric models, for examples, dyadic autoregressive process of

finite order (DAR-process), dyadic moving average process of finite order

(DMA-process) and dyadic autoregressive moving average process of finite

order (DARMA-process), then there exist the greatest differences between

dyadic stationary processes and ordinary stationary ones. That is, it is

known that these DAR, DMA and DARMA are equivalent in the sense that DAR

or DARMA-process of finite order can be expressed as DMA-process of finite

order (see Nagai (1980) or Nagai and Taniguchi (1987)).

in this section, for a finite order dyadic autoregressive model, we

can propose a simpler order determination criterion. Then we show that this

criterion gives strong consistent order estimate.

A q-dimensional dyadic stationary process {Y(t), t e T} is called a

dyadic autoregressive process, if it can be expressed by

~A.Y(t 0+j) = e(t), t e T, (4.1)

where

(i) A.'s are qxq matrices, A0 = lq, and p = 2 r - 1, where r is a non-

negative integer,

(ii) c(t), t e T, are i.i.d. random vectors such that

Ee(t) = 0, Ec(t)c(t)' = G > 0, (4.2)

(iii) det- P(x) 0 , a.e.X, (4.3)

p
where I (A) AWj,)

j=O

N N,
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If (4.2) and (4.3) hold true, then the Walsh spectral density of {Y(t)} is

f() =D(X ,(x)-l} '  (4.4)

We call a DAR process (4.1) irreducible if there does not exist such

a matrix

r1
r-1

2 1

j=O

which satisfies

f(X) G (P)G{ I()- il', a.e. . (4.5)

Especially, for an irreducible DAR process (4.1), there exists a to,

r-1 r2 < t <2 - 1, such that A O,-0 t0
For an irreducible DAR model (4.1), p is called the order of the model.

For simplicity, such a model is written as DAR(p). Note that in the above

definition, the order of the model (4.1) is defined as p = 2 1, not as

max{t: P tO}. The advantage of such a definition is that it suits to the

Walsh spectrum analysis, and is convenient for estimating the parameters

of the model. To see this, consider the following two scalar irreducible

DAR model:

X(t) + X(t® 1) + aX(t( 2) :(t),

and

Y(t) + Y(tDl) + aY(t(n)3) = c(t), t e T,

where a 0, a ±2, e(t)'s are i.i.d. with EE(t) = 0, Ec(t) 2  . It is

easily seen that they have the same Walsh spectral density

a [1 + W(,x) + W(2,x)]-2 .

But if we define the order of the model as max{t: AtO}, then their order

,-.Se,

- S. -- +i %. 'p ii -9. . I -% s' 9 % % 14 ° 5.'
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may be 2 and 3 respectively. Obviously such a definition is not convenient

for Walsh spectrum analysis. It is easy to see that these two models are

not essentially different. For a qxq matrix A = (aij, l< i, j <q), denote

r4

1AII = Jq jljaij. To determine the order p = 2r - 1 of the irreducible

model (4.1), we suggest the following criterion:

LN(k) = - = O1 if JO Y(t)Y(tg (2k +n))'II 2 - T (4.6)

where Y(O),...,Y(N-1) are the observations of the model (4.1), N 2m with

m positive integer, and CN satisfies the following conditions:

lim CN 0 and lim N c (4.7)
N- NNz log log N

Define

r = max{k>O: LN(k-l)>O, LN(k)<0}. (4.8)

where LN(-l) : 1 for convenience. We can use r as an estimate of the true

N N

value r of the model (4.1). We have the following

THEOREM 3. If the model (4.1) is irreducible and (i), (ii) and (iii)

are satisfied, then

lim r = r, a.so (4.9)
N- N

Proof. Suppose that p is the true order of the model (4.1) and

p : 2r - 1. According to Nagai and Taniguchi (1987), if det{f(X)} 0,

then {Y(t): t e TI is a DMA-process written by

2 r_l1
Y(t) 0 K Kj2 tr(j), t e T. (4.10)

jO=

,, ff [, v,, ,. . . . . 4 . -s. .- ,. ,.. .,.... . .., . .,.. .., ...... ..., . .. ..., ;. . .,. . ,. .,._.... ,, .,,-...,.,....



Put r(n) EY(O)Y'(n). By (4.10) and the condition (ii), it is 4,'

easily seen that for any n,

N-11

1 Y(t)Y'(t~n) - r(n)II =~s (4.11)og >Nt:O N ), a s( .1 ):

rL
as N ,(e.g Petrov (1975)). By (4.10) for n > 2 , r(n) 0. Thus

."

if k > r, then .

,.(k) lo lo1g cN .N '
L, k 0 a.s. (4.12)

as N s From this and , N it follows that with probability

1 ~ ~ o N-i Noo 7

one for N large,

as N < (, k > r. (4.1f)on 0

If r 0 r, the theorem is proved

Now assume that r > l. We have il

lim 2 1 _ 1 1 - Y(t)Y(t& (2 r - I +n))' 2

N w n O t O ;

2r-l-I 
.

on fo N large

I Lr(2 +n)I, a.s. (4.14)

n=O

We proceed to prove that

2r-l-l
I t~ (2 r -  + n) 11 > 0. (4.15)

Otherwise, we have

2r-1-_1f I) e [(4.16)

F 1 0

2 r- i N-i l ' .

lim 1 Yt')Yt(T(2 -+n)~''

L 
1 1 N'#
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Put h : 2 r-l-l, j j/(h+1), j = O,l,...,h. We know that for all

<h, W(i,X) = W(zx.) for x e . ). From this it is easily seen V

that f(X) takes only at most h + 1 different values, say, f(Xo),...,f)Xh).

By (4.4), G > 0 and 4(x) 0, it is easily seen that f(x.) > 0, j = 0,l,...,h. %
3L

Hence we can write

G : Gl/2(Gl) ' , f(xj) f'/2(x )fl 2(x.)', '.,1

j - 0,1,...,h. Put

"W(OX 0)  W(lX ,0 )  . , W(h, O )-

W(OXl1 W(IX 1 ) ... , W(h,x 1)  I

H =
h+l.

LW(O, h )  W(l' ,h )  ., W(h,x h )

Then H+H h+l (h+l)l h+. Thus the matrix equation ,

Bo G -1 10O G-/f/(XO) ""

(Hh+l ® lq) (4.17)

Bh G- /2 fl/2 (}Xh)

has a unique solution (B6, ...,B'), where Bj's are all qxq matrices. From

(4.17) we can see that

h h
B W( , G()' 3X j 0, ,...,h, (4.18)

which implies

n(X)Gn(x)' :f( ), [0,1] (4.19)

#,,..... '. -. -I".-",-". ., .-.. "- ", "..'w.'m'. '.'' ''.''-'.'. ,..'..",';.".'. ".,'..'..'.S.'.,j'j..',z.'.'..'..'.' Z.." '. .>"- .;,Z .> j- .' , .- '.
,.
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Oe;

where

h b
n(A) =  B W(k,x). (4.20)

i =0
V..'

By Nagai and Taniguchi (1987) there exists

2r-l
l( )  ~ : KW(t,x)

k=0

such that

= lq a.e. x. (4.21)

Thus we have

f(X) ()G{l 1(x)-l', a.e. X, (4.22)

which contradicts our irreducibility assumption. Now (4.15) has been

proved. By (4.14), (4.15), (4.6) and (4.7), with probability one for

large N,

LN(r-1) > 0, r > 0. (4.23)

Noting (4.13) and (4.23), with probability one for large N, we have

rN = r. (4.24)

Remark. The following scalar process {Y(t); t e TI is a reducible

DAR process:

X(t) + X(tel) + X(t®2) - X(t®3) = E(t), t e T, V

2 2where c(t)'s are i.i.d. with Ec(t) = 0 and Ec(t) = . Then

( 1 + W(l, ) + W(2,X) -W(3 A) ,

but -

2 2
2
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5. DETECTION OF SIGNALS FOR DYADIC STATIONARY PROLESSES

In this section we shall consider a signal detection model for dyadic

process of finite order, and show that this model is equivalent to a dyadic

moving average model. Then we can apply the results in Sections 3 and 4 to

our model. That is, we can determine the order of the signal dyadic process

from the data.

Let {Y(t)} be a q-dimensional dyadic stationary process defined by

p
Y(t) I A(j)S(tGj) + (t), (5.1)

j=O

where S(t) is an r-dimensional dyadic stationary signal process, and E(t) is

a q-dimensional dyadic stationary noise process, and A(j) are qxr-matrices.

Here we assume that {S(t)} is an r-dimensional DARMA(s,h)-process defined by

s h
~ B(j)S(j~t) = C(j)U(jDt), t = 0,1,..., (5.2)

J=O j=O

where {U(t)} is an r-dimensional white noise process. Also {f(t)} is a

q-dimensional DARMA(t,m)-process defined by

£ m

D(j)E(j(Q)t) : Z F(j)V(jntt), t = 0,1,..., (5.3)
a.J=O j=O

where {V(t)} is a q-dimensional white noise process which is independent of

{U(t)}. We assume that all the coefficients {A(j)}, {B(j)}, {C(j)}, {D(j)}

and {F(j)} are completely specified by an unknown parameter vector e with

dimension k, and that

s
det{ Y B(j)W(j,x)} 0,

= (5.4)

det{ D(j)W(j,x)) 0, for all 0 < x < 1o
j=O
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11

IiU(t)} and {V(t)} by Y(t) = f W(t 3x)dZ W,) S(t) = f1W(t~xd W

dt) ~t~xdZ (I), ~t) fl ~t~xdZ W and V(t) tdvx)-16 0 U o
respectively. The relation (5.1) can be written as

dZy(X) = TA()dZS(X) + dZ Wx, (5.5)

briefly, where 1,A(x) = IP A(j)W(j,x). While we can have

dZs) T BA)v (x)dZu(W, (5.6)

dZ Wx (X-Tx=Z~) (5.6) -

where =Y\A = L' ,,)B(.j)W(j,x), T (x = I~. 0 ~)~~) D(X) sh .D(j)W(j,x)

and 'PF(X) = ~F(j)W(j,x). Finally, we get

dZ (A ~A (X)9B()9YTC (x)dZ U(W + T D(X)- TF( X)dZV(X)

[T (X) (X)T T(X- TX] (5.8)

By Nagai and Taniguchi (1987), under (5.4), we can get the following repre-

sentations

B J=O

and

1
'D (X)- 1 1 D(j)W(j,X),

j=O

where s' =2 -1, V 2b 1, a and b are the minimum nonnegative integers

which satisfy s < 2a 1, z < 2b 1, respectively. Thus it is easy to see

that TAM'B'') 1 T () and T (X)- F(x) can be written as finite linearA C D F
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combinations of Walsh functions 4

d 1  d1

IG(j)W(j ,x), I H(j)W(j,X), ,

j=O j0.

respectively. So the relation (5.8) implies that our model (5.1) is equiva-

lent to a DMA-process of finite order. We can assume that our {Y(t)} has

the finite DMA type Walsh spectral density matrix f (x). To determine the

order of dim 8, we can use the criterion

-k IN) kCN
A(k) D(f k I + N

given in (3.1). Of course we can use A(k) to determine the number of

signals.

S a
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6. TEST OF HYPOTHESIS FOR LINEAR RESTRICTION OF PARAMETERS

Let {Y(t)) be a scalar-valued dyadic stationary process with Walsh

spectral density fe(A) depending on an unknown parameter e = (el, ...,e p)'.

We assume that {Y(t)) satisfies all the assumptions in Theorem 1. The

first problem is to test a composite hypothesis HO:0 2 = 2O, against

H: e2 e20 where p (ol, 2 , = ( . -2 = (%+ l ... Op)

and e (e+l,0 , . ,e), a specified vector and (j,e2 O ) e Int e.

Although we do not assume tne Gaussianity of {Y(t)}, we can formally make

the following 'log-likelihood ratio criterion

G = 2logL = N{D(f(6 I P - D(f(6 )IN)}, (6.1)

where 6' (ee) is the quasi-maximum likelihood estimator for e under H,

and 01 is that for e under H0 . Put v = ( 6(- _), w = l(e, -e I and u' -

(w', '). Expanding in a Taylor expansion around e, we have

-G = N{D(f( 1,'20) IN) - D(f( 1) ) N)

~1 ~ 2
a 2D(f , IN

-(u-v)' U - v) (l+p

S2D(fQ, IN )
= -v2 ae e p

2 l-(u-v)'Mf(u-v)'(l+p( I ))2 . (6.2)

From Theorem I we have

v = -M_ 1 vN- -LD(f )(1 +0 (1)). (6.3)
f ae elI p

Similarly we have

u -LfvN--D(fiN +0 (1)), (6.4)
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where

_1
0 0

and

Ea o D(f e) IN I + Q(N).-

From (6.2), (6.3) and (6.4) we have

-G = .1 if_ _T f - L]M[ f-frq B (i +(1)2 ae ff op1

1 DDfg N -D_(feI N )
=T ag.,~ [Mf - L fv' a 0 ( +0 (1)). (6.5)

Here we put the following assumptions:

Assumption 4. The process {Y(t)} is a scalar linear dyadic stationary

process represented as

Y(t) = j Aje(t(Dj), (6.6)

where J....QA.I < and the e(t)'s are independent random variables.

Asswurption 5. The unknown parameter e of f ()is innovation-free, i.e.,

0 -0

(See Hosoya and Taniguchi (1982).)

LEMMA 2. Suppose that Assumptions 1-5 are satisfied, and that

Ij=0 A iW(ji) 0 for all x e [0,1]. For an innovation-free parameter 2we

have

. P * . ~ ' * / .N . .q 9 D ** g N ) ~ , ' * ..
4  

( 6 .8)-ae ~ * 
A;p-~%~*
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Proof. Using a similar argument to Hosoya and Taniguchi (1982), we

can see that
1 afe(x) fe(W)

Do "_, a f4( 
'XX,)dxdp = 0,

for j,m = 1,...,p, where f4 (.) is the fourth order cumulant spectral density.

Putting f )(x) = in Lemma 1, we have the desired result. DPuttng @( ) e.
3-"

Applying Lemma 2 to (6.5) we have

THEOREM 4. Suppose that Assumptions 1-5 are satisfied. Then the dis-

tribution of -G under H0 tends to x 2(p- 9) as N .

Now we consider a more general test of hypothesis.

H0 : Be = u20 against H: Be u20,

where B is. a (p- k)xp matrix with rank B = p-i, and u20 (Uz+l, 0, '

Then there exists an txp matrix A such that

B )e = (u2 11(e),

\2

where det(B 0. Let 6 be the quasi-maximum likelihood estimator of e e e,

then u() - £. Then the likelihood ratio criterion uf testing

H: u2 =u 20  against H: u2  u

is given by

G=N{D(f(61,N2 ), IN) - (lu20)' IN)}, (6.9)

where ul is the quasi-maximum likelihood estimator of u1 under HO. Then

we have

THEOREM 5. Suppose that Assumptions 1-5 are satisfied. Then the dis-
2

tributions of -G under H0 tends to x (P- .) as N .

0'I
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